If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2a^2+16a+12=0
a = 2; b = 16; c = +12;
Δ = b2-4ac
Δ = 162-4·2·12
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{10}}{2*2}=\frac{-16-4\sqrt{10}}{4} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{10}}{2*2}=\frac{-16+4\sqrt{10}}{4} $
| 4^(2x+1)=8^(x-2) | | 40z+10-28-49=7z+20-17z | | (8+x)x=148 | | 2(3-4x)-1=(-19) | | M-6=3m-1 | | 5*2^(3x-1)=30 | | 3,4x+13=30 | | 4(6×-1)=6(3x+5) | | (2-x)(-3)-(4(3x-1))=0 | | (2-x)(-3)=4(3x-1) | | (2-x)3=4(3x-1) | | (2-x)*3=4*(3x-1) | | Z(10+z)=7z | | 14x+10=48–12x | | 3y-2=2+2y | | 3x/4+5=12 | | 9x—7/5x—8=—⅔ | | x+6/x-4=11 | | -1/3(6/5−9b)+b=2b−(b+1) | | -8x+4=-25+1 | | 9x-5=7+4x | | (3+x)^1/2+2x=42 | | √(3+x)+2x=42 | | 5×10^4×x=5×10^4+5000x | | 49-343^(2x+3)=0 | | 2a+4=7a-a | | 2a+4-2a=7a-a-2a | | x/5+2=27 | | (c+7)/3)=9 | | (c=7)/3=9 | | (1/27)^2x-5=√9^3x+2 | | R(p)=-0.4p2+64p-2400 |